Select the correct answer. Which equation describes the function modeled in this table? 1 -2. -1 0 1 2 3 4 6 0 0 (more 6 16 30 OA. Y O B. Y (2x - 1)(x - 1) 2(x - 1)? 2(x + 1)2 2x2 – 2 O C. y = D. y
![Select the correct answer Which equation describes the function modeled in this table 1 2 1 0 1 2 3 4 6 0 0 more 6 16 30 OA Y O B Y 2x 1x 1 2x 1 2x 12 2x2 2 O C class=](https://us-static.z-dn.net/files/dc6/5d9cf0c13c5a06a935d5a00296c935c2.png)
Given:-
A set of data.
To find the required equation.
So from the given equation, the equation which suits is,
[tex]y=2x^2-2[/tex]So now we prove it by substituting the values from the table.
When x=-2 we get the value as,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(-2)^2-2 \\ y=2\times4-2 \\ y=8-2 \\ y=6 \end{gathered}[/tex]So the value of y is 6.
When x=-1. we get,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(-1)^2-2 \\ y=2\times1-2 \\ y=2-2 \\ y=0 \end{gathered}[/tex]So the value of y is 0.
When x=0. we get,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(0)-2 \\ y=-2 \end{gathered}[/tex]So the value of y is -2.
When x=1. we get,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(1)-2 \\ y=2-2 \\ y=0 \end{gathered}[/tex]So the value of y is 0.
When x=2. we get,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(2)^2-2 \\ y=2\times4-2 \\ y=8-2 \\ y=6 \end{gathered}[/tex]So the value of y is 6.
When x=3. we get,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(3)^2-2 \\ y=2\times9-2 \\ y=18-2 \\ y=16 \end{gathered}[/tex]So the value of y is 16.
When x=4. we get,
[tex]\begin{gathered} y=2x^2-2 \\ y=2(4)^2-2 \\ y=2\times16-2 \\ y=32-2 \\ y=30 \end{gathered}[/tex]So the value of y is 30.
So from this we can conclude that the correct equation is,
[tex]y=2x^2-2[/tex]