Using the 30°-60°-90° triangle theorem, we can find that the area of the trapezoid is 242.48 unit².
What is the trapezoidal?
The polygon has four sides and four vertices. In this a pair of opposite sides are parallel. Trigonometry deals with the side and angles of the triangle.
Area of trapezoidal
[tex]\rm Area\ of\ trapezoid = \dfrac{1}{2} (sum\ of\ parallel\ sides) * height[/tex]
Given
VW║ZYXVW = YZ = 10 units.
WY = 8√3∠x = 60°.
To find
The area of the trapezoid.
In ΔXYW
[tex]\begin{aligned} \rm tan\ \theta\ &= \dfrac{Perpdicular}{Base}\\\rm tan 60^{o} &= \rm \dfrac{8\sqrt{3} }{XY} \\\rm XY &= 8\\\end{aligned}[/tex]
Then XZ = XY + YZ = 10 + 8 = 18 unit.
Then the area of the trapezium will be
[tex]\rm Area\ of\ trapezium = \dfrac{1}{2} (sum\ of\ parallel\ side)*\ height\\\\Area\ of\ trapezium = \dfrac{1}{2} (VW + XZ)* WY\\\\Area\ of\ trapezium = \dfrac{1}{2} (18+10)*10\sqrt{3} \\\\Area\ of\ trapezium = 242.48[/tex]
Thus, the area of the trapezoid is 242.48 unit².
More about the trapezoid link is given below.
https://brainly.com/question/4758162