[tex]\displaystyle\int\frac{\mathrm dx}{\sin3x\tan3x}=\int\frac{\cos3x}{\sin^23x}[/tex]
Set [tex]u=\sin3x[/tex], so that [tex]\mathrm du=3\cos3x\,\mathrm dx[/tex]. Then the integral is
[tex]\displaystyle\frac13\int\frac{\mathrm du}{u^2}=-\frac1{3u}+C=-\frac1{3\sin3x}+C=-\frac13\csc3x+C[/tex]
Or, if you meant exponents in place of coefficients,
[tex]\displaystyle\int\frac{\mathrm dx}{\sin^3x\tan^3x}=\int\csc^3x\cot^3x\,\mathrm dx=\int\csc^2x\cot^2x\csc x\cot x\,\mathrm dx[/tex]
Let [tex]u=\csc x[/tex], so that [tex]\mathrm du=-\csc x\cot x\,\mathrm dx[/tex], and use the fact that [tex]\csc^2x=\cot^2x+1[/tex] to get
[tex]\displaystyle-\int u^2(u^2-1)\,\mathrm du=\int (u^2-u^4)\,\mathrm du=\frac13u^3-\frac15u^5+C[/tex]
[tex]=\dfrac13\csc^3x-\dfrac15\csc^5x+C[/tex]