Respuesta :
Product rule :)
[tex]\rm y=e^{\alpha x} sin{\beta x}[/tex]
Start by "setting up" your product rule,
makes it easier to manage,
[tex]\rm y'=\left(e^{\alpha x}\right)' sin{\beta x}+e^{\alpha x} \left(sin{\beta x}\right)'[/tex]
Derivative of exponential gives you the same function back but with chain rule applied,
[tex]\rm y'=\left(\alpha e^{\alpha x}\right) sin{\beta x}+e^{\alpha x} \left(sin{\beta x}\right)'[/tex]
and derivative of sine gives us cosine, again with chain rule giving us an extra coefficient,
[tex]\rm y'=\left(\alpha e^{\alpha x}\right) sin{\beta x}+e^{\alpha x} \left(\beta cos{\beta x}\right)[/tex]
Factoring the exponential out gives us a nicer looking answer,
[tex]\rm y'=e^{\alpha x}\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)[/tex]
For our second derivative, same process but it will be a little bit more work this time. We'll start by "setting up" our product rule,
[tex]\rm y''=\left(e^{\alpha x}\right)'\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)+e^{\alpha x}\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)'[/tex]
and differentiating where it's needed,
[tex]\rm y''=\left(\alpha e^{\alpha x}\right)\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)+e^{\alpha x}\left(\alpha \beta cos{\beta x}-\beta^2 sin{\beta x}\right)[/tex]
and again factoring out the exponential, distributing the alpha to the first two terms, and simplifying where possible,
[tex]\rm y''=e^{\alpha x}\left(\alpha^2 sin{\beta x}+\alpha\beta cos{\beta x}+\alpha \beta cos{\beta x}-\beta^2 sin{\beta x}\right)[/tex]
[tex]\rm y''=e^{\alpha x}\left(\alpha^2 sin{\beta x}+2\alpha\beta cos{\beta x}-\beta^2 sin{\beta x}\right)[/tex]
any confusion along the way?
[tex]\rm y=e^{\alpha x} sin{\beta x}[/tex]
Start by "setting up" your product rule,
makes it easier to manage,
[tex]\rm y'=\left(e^{\alpha x}\right)' sin{\beta x}+e^{\alpha x} \left(sin{\beta x}\right)'[/tex]
Derivative of exponential gives you the same function back but with chain rule applied,
[tex]\rm y'=\left(\alpha e^{\alpha x}\right) sin{\beta x}+e^{\alpha x} \left(sin{\beta x}\right)'[/tex]
and derivative of sine gives us cosine, again with chain rule giving us an extra coefficient,
[tex]\rm y'=\left(\alpha e^{\alpha x}\right) sin{\beta x}+e^{\alpha x} \left(\beta cos{\beta x}\right)[/tex]
Factoring the exponential out gives us a nicer looking answer,
[tex]\rm y'=e^{\alpha x}\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)[/tex]
For our second derivative, same process but it will be a little bit more work this time. We'll start by "setting up" our product rule,
[tex]\rm y''=\left(e^{\alpha x}\right)'\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)+e^{\alpha x}\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)'[/tex]
and differentiating where it's needed,
[tex]\rm y''=\left(\alpha e^{\alpha x}\right)\left(\alpha sin{\beta x}+\beta cos{\beta x}\right)+e^{\alpha x}\left(\alpha \beta cos{\beta x}-\beta^2 sin{\beta x}\right)[/tex]
and again factoring out the exponential, distributing the alpha to the first two terms, and simplifying where possible,
[tex]\rm y''=e^{\alpha x}\left(\alpha^2 sin{\beta x}+\alpha\beta cos{\beta x}+\alpha \beta cos{\beta x}-\beta^2 sin{\beta x}\right)[/tex]
[tex]\rm y''=e^{\alpha x}\left(\alpha^2 sin{\beta x}+2\alpha\beta cos{\beta x}-\beta^2 sin{\beta x}\right)[/tex]
any confusion along the way?