Answer:
x = 6, y = 8
Step-by-step explanation:
The diagonals of a parallelogram bisect each other.  [tex]\frac{PT}{QT}[/tex] ≅ [tex]\frac{TR}{ST}[/tex]
- Set up a system of linear equations by substituting the algebraic expressions for each segment length. [tex]\frac{2x}{x+2 }[/tex] ≅ [tex]\frac{y+4}{y}[/tex]   (Notice y = x+2)
- Substitute (x+2) for y, then solve for x.
    2x = (x+2) + 4
    2x = x + 6 (subtract x from both sides)
    x = 6
- Substitute 6 for x, then solve for y.
    2(6) = y + 4
    12 = y + 4 (subtract 4 from both sides)
    y = 8
So, x = 6, y = 8