To find the inverse, we:
• change f(x) to y
,• interchange x and y
,• solve for y
Thus,
[tex]\begin{gathered} f(x)=2x^2-5 \\ y=2x^2-5 \\ x=2y^2-5 \\ 2y^2=x+5 \\ y^2=\frac{x+5}{2} \\ y=\pm\sqrt[]{\frac{x+5}{2}} \\ f^{-1}(x)=-\sqrt[]{\frac{x+5}{2}} \end{gathered}[/tex]We take the "negative" part of the function since it is defined for - ♾ < x < 0.
We found inverse of f.
Now, to find f^(-1) (-2), we put -2 into the inverse and evaluate.
[tex]\begin{gathered} f^{-1}(x)=-\sqrt[]{\frac{x+5}{2}} \\ f^{-1}(-2)=-\sqrt[]{\frac{-2+5}{2}} \\ =-\sqrt[]{\frac{3}{2}} \end{gathered}[/tex]