B is the midpoint of AC . AB=6x-2 and BC=2x+10.Find the value of x and the length of the segment indicatedx=AC=

Answer:
x=3 units
AC=32 units
Explanation:
If B is the midpoint of AC, it means B divides line AC into two equal parts AB and BC.
[tex]\begin{gathered} AB=BC \\ 6x-2=2x+10 \\ 6x-2x=10+2 \\ 4x=12 \\ \frac{4x}{4}=\frac{12}{4} \\ x=3 \end{gathered}[/tex]Next, we find the value of AC.
[tex]\begin{gathered} AB=6x-2 \\ =6(3)-2 \\ =18-2 \\ =16 \\ \text{Therefore:} \\ AC=AB\times2 \\ =16\times2 \\ =32 \end{gathered}[/tex]