G(0)/4 find the exact value of the expression of 0=30 degrees

Answer:
√3/8
Explanation:
If θ = 30 degrees, the value of the function g(θ) = cos θ is equal to:
g(θ) = cos θ
g(30) = cos 30 = √3/2
Then, if we want to find g(θ)/4 when θ = 30, we will replace g(θ) by √3/2 to get:
[tex]\frac{g(\theta)}{4}=\frac{g(30)}{4}=\frac{\frac{\sqrt[]{3}}{2}}{4}=\frac{\sqrt[]{3}}{2\cdot4}=\frac{\sqrt[]{3}}{8}[/tex]Therefore, the exact value for g(θ)/4 when θ = 30 is √3/8