Given the quadratic equation:
[tex]y=x^2-7x+3[/tex]
To create a sketch of the quadratic function, follow the steps below.
Step 01: Find the x-intercepts.
The x-intercepts are the zeros of the function and can be found using the quadratic formula:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]
In this question:
a = 1
b = -7
c = 3
Then,
[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-(-7)\pm\sqrt[]{(-7)^2-4\cdot1\cdot3}}{2\cdot1} \\ x=\frac{7\pm\sqrt[]{49-12}}{2}=\frac{7\pm\sqrt[]{37}}{2} \\ x_1=\frac{7-\sqrt[]{37}}{2}=0.5 \\ x_2=\frac{7+\sqrt[]{37}}{2}=6.5 \end{gathered}[/tex]
So, the equation has the points (0.5, 0) and (6.5, 0).
Step 02: Find the vertex.
The x-vertex is:
[tex]\begin{gathered} x_v=\frac{-b}{2a} \\ x_v=\frac{-(-7)}{2\cdot1} \\ x_v=\frac{7}{2} \\ x_v=3.5 \end{gathered}[/tex]
And, the y-vertex is:
[tex]\begin{gathered} y_v=\frac{-(b^2-4ac)}{4a} \\ y_v=\frac{-\lbrack(-7)^2-4\cdot1\cdot3\rbrack}{4\cdot1} \\ y_v=\frac{-(49-12)}{4} \\ y_v=\frac{-37}{4}=-9.25 \end{gathered}[/tex]
So, the vertex is the point (3.5, -9.25).
Step 03: Find the axis of symmetry.
The axis of symmetry is the line x = xv.
So, the axis of the symmetry is x = 3.5.
Step 04: Draw the graph.
Plot the point and connect them. Then, draw the axis of symmetry.