Solution:
Given that
[tex]\begin{gathered} number\text{ of red blocks}\Rightarrow36 \\ number\text{ of green blocks}\Rightarrow49 \\ number\text{ of yellow blocks}\Rightarrow23 \\ number\text{ of purple blocks}\Rightarrow17 \\ Total\text{ numbr of blocks}\Rightarrow125 \end{gathered}[/tex]The probability of an event is expressed as
[tex]Pr(event)=\frac{number\text{ of desired outcome}}{total\text{ nu,ber of possible outcome}}[/tex]In this case, the total number of possible outcome equals 125.
Step 1: Evaluate the probability of picking a red block.
Thus,
[tex]\begin{gathered} Pr(red)=\frac{number\text{ of red blocks}}{total\text{ numbr of blocks}} \\ =\frac{36}{125} \end{gathered}[/tex]Step 2: Evaluate the probability of picking a purple block.
Thus,
[tex]\begin{gathered} Pr(purple)=\frac{number\text{ of purple blocks}}{total\text{ number of blocks}} \\ =\frac{17}{125} \end{gathered}[/tex]Step 3: Evaluate the probability of picking a red or purple block.
The probability of picking a red or purple block is expressed as
[tex]Pr(red\text{ or Purple\rparen=Pr\lparen red\rparen+Pr\lparen purple\rparen}[/tex]Thus, we have
[tex]\begin{gathered} Pr(red\text{ or purple\rparen=}\frac{36}{125}+\frac{17}{125} \\ \Rightarrow Pr(red\text{ or purple\rparen=}\frac{53}{125} \end{gathered}[/tex]Hence, we have the theoretical probability P(red or purple) to be
[tex]\frac{53}{125}[/tex]