Answer:
$51134
Explanation:
First, we need to find the area of the land. So, we need to identify the height of the triangle h as:
Then, using the trigonometric functions, we can calculate the value of h as:
[tex]\begin{gathered} \sin 45=\frac{\text{Opposite }}{\text{ Hypotenuse}} \\ \sin 45=\frac{h}{200} \\ 200\cdot\sin 45=h \\ 141.42=h \end{gathered}[/tex]Now, the area of the triangle in square yards is:
[tex]\begin{gathered} A=\frac{\text{ Base x Height}}{2} \\ A=\frac{350\text{ yd }\times141.42\text{ yd}}{2} \\ A=24,748.74yd^2 \end{gathered}[/tex]1 acre is equal to 1840 square yards, so the area in acres is:
[tex]24,748.72yd^2\times\frac{1\text{ acre}}{4840\text{ yd}}=5.1134\text{ acres}[/tex]Finally, the price of the land can be calculated as:
[tex]5.1134\text{ acres }\times\text{ \$10,000 per acre = \$5113}4[/tex]Therefore, the land cost $51134