Rewrite each expression of two powers or a quotient of two powers

Expression:
[tex](\frac{8^4\cdot5^3}{8^5})^2[/tex]To solve this expression first we have to use the Power rule:
[tex](a^x)^y=a^{x\cdot y}[/tex]We can use this to simplify our expression as follows:
[tex]=\frac{(8^4)^2\cdot(5^3)^2}{(8^5)^2}[/tex][tex]=\frac{8^{4\cdot2}\cdot5^{3\cdot2}}{8^{5\cdot2}}[/tex][tex]=\frac{8^8\cdot5^6}{8^{10}}[/tex]Now we will use the Quotient rule:
[tex]\frac{a^x}{a^y}=a^{x-y}[/tex]To do that, we have to have the same number a, we cannot do this in the division of 5^6/8^10, but we can use it in 8^8/8^10:
[tex]=\frac{8^8}{8^{10}}\cdot5^6[/tex][tex]=8^{8-10}\cdot5^6[/tex][tex]=8^{-2}\cdot5^6[/tex]Answer:
[tex]=8^{-2}\cdot5^6[/tex]