help please !!! i’m trying to graduateplease refer left box as “box a” and the right as “box b” :)

Given:
There are given the two-equation:
[tex]\begin{gathered} f(x)=-0.3(x-2)^2+5...(1) \\ f(x)=0.2(x+2)^2-5...(2) \end{gathered}[/tex]Explanation:
According to the question, we need to find the values of vertex, the axis of symmetry, and focus.
Now,
First, find all values for the first equation:
So,
From the equation (1):
[tex]\begin{equation*} f(x)=-0.3(x-2)^2+5 \end{equation*}[/tex]Then,
From the standard form of the equation of parabola:
[tex]y=a(x-h)^2+k[/tex]Where,
[tex]\begin{gathered} vertex:(h,k) \\ Axis\text{ of symmetry:x=h} \end{gathered}[/tex]Now,
The values for the equation (1) are:
[tex]\begin{gathered} vertex:(2,5) \\ Axis\text{ of symmetry: x=2} \\ focus:(2,4.166) \end{gathered}[/tex]Now,
For the equation (2):
[tex]\begin{equation*} f(x)=0.2(x+2)^2-5 \end{equation*}[/tex]Then,
[tex]\begin{gathered} vertex:(-2,-5) \\ focus:(-2,-3.75) \\ Axis\text{ of symmetry: x=-2} \end{gathered}[/tex]Final answer:
Hence, the all values for both box are shown below:
So,
For the first box:
[tex]\begin{gathered} \begin{equation*} f(x)=-0.3(x-2)^2+5 \end{equation*} \\ vertex:(2,5) \\ focus:(2,4\frac{1}{6}) \\ Ax\imaginaryI s\text{ofsymmetry: x=2} \end{gathered}[/tex]And,
For the second box:
[tex]\begin{gathered} \begin{equation*} f(x)=0.2(x+2)^2-5 \end{equation*} \\ vertex:(-2,-5) \\ focus:(-2,-3\frac{3}{4}) \\ Axis\text{ of symmetry:x = -2} \end{gathered}[/tex]