GIVEN:
You roll a fair six-sided die.
You win $10 if you roll at least 4
You lose $3 if you roll the numnber 3.
If you roll any other number, you will neither win nor lose.
Required;
Find the expected value of this probability experiment.
Step-by-step solution;
We shall take the expected winning or loss from each condition given;
[tex]\begin{gathered} Probability\text{ }of\text{ }at\text{ }least\text{ }5: \\ \\ P[rolling\text{ }a\text{ }5]=\frac{1}{6} \\ \\ P[rolling\text{ }a\text{ }6]=\frac{1}{6} \\ \\ P[rolling\text{ }a\text{ }5\text{ }or\text{ }6]=\frac{1}{6}+\frac{1}{6} \\ \\ =\frac{1}{3} \end{gathered}[/tex]For this outcome, we now have;
[tex]\begin{gathered} Expected\text{ }value=P[at\text{ }least\text{ }5]\times10 \\ \\ EV=\frac{1}{3}\times10 \\ \\ EV=3.33 \end{gathered}[/tex]The probability of rolling a 3 is;
[tex]P[rolling\text{ }a\text{ }3]=\frac{1}{6}[/tex]Therefore, the expected value is now;
[tex]\begin{gathered} EV=P[rolling\text{ }a\text{ }3]\times(-3) \\ \\ EV=\frac{1}{6}\times(-3) \\ \\ EV=-0.5 \end{gathered}[/tex]If you roll any other number you will neither win nor lose.
Therefore the expected value for rolling any other number will be zero (that is, the probability multiplied by $0).
Therefore, the expected value (winnings) of this probability experiment would be;
[tex]\begin{gathered} Expected\text{ }value=3.33+(-0.50) \\ \\ Expected\text{ }value=2.83 \end{gathered}[/tex]ANSWER:
The expected value of playing this game with the conditions given is $2.83