which of the following is equivalent to i⁹A. i²⁷/i³B. (i⁴) (i⁵)C. (i³)²D. iE. (i • i) x (i•i•i•i) x (i•i•i) F. (i³)³(there could be more than one answer)

Respuesta :

[tex]i^9=i^{1+4+4}=i\cdot i^4\cdot i^4=i\cdot1\cdot1=i[/tex][tex]\frac{i^{27}}{i^3}=i^{27-3}=i^{24}=i^{4\cdot6}=(i^4)^6=1^6=1[/tex][tex]i^4\cdot i^5=i^{4+5}=i^9=i[/tex][tex](i^3)^2=i^{3\cdot2}=i^6=i^{4+2}=i^4\cdot i^2=1\cdot(-1)=-1[/tex][tex](i\cdot i)\cdot(i\cdot i\cdot i\cdot i)\cdot(i\cdot i\cdot i)=i^2\cdot i^4\cdot i^3=i^{2+4+3}=i^9=i[/tex][tex](i^3)^3=i^{3\cdot3}=i^9=i[/tex]

Options B, D, E, and F are correct

RELAXING NOICE
Relax