Respuesta :

[tex]\begin{gathered} Total\text{ cards=(13)}\cdot\text{(4)} \\ Total\text{ cards=}52 \\ \text{Total face cards=}(3)\cdot(4) \\ \text{Total face cards=12} \\ \text{First pulling} \\ P_1=\frac{12}{52}=\frac{3}{13}=0.231=23.1\text{\%} \\ Second\text{ pulling} \\ P_2=\frac{11}{51}=0.216=21.6\text{\%} \\ \text{Third pulling} \\ P_3=\frac{10}{50}=\frac{1}{5}=0.2=20.0\text{\%} \\ \text{Fourth pulling} \\ P_4=\frac{9}{49}=0.184=18.4\text{\%} \\ \text{Fifth pulling} \\ P_5=\frac{8}{48}=\frac{1}{6}=0.167=16.7\text{\%} \\ \text{Chance of pulling 5 face cards} \\ \text{Chance}=(\frac{3}{13})\cdot(\frac{11}{51})\cdot(\frac{1}{5})\cdot(\frac{9}{49})\cdot(\frac{8}{48}) \\ \text{Chance}=0.000305=0.0305\text{ \%} \\ \text{The change is }0.000305\text{ or }0.0305\text{ \%} \end{gathered}[/tex]

RELAXING NOICE
Relax