Respuesta :

Answer:

The coordinate of the point T is (13, -6)

The coordinate of the point R is (-1, 9)

Explanation:

Given the points R(-9,4) and S(2, -1), where S is the midpoint of RT, we want to find T.

The coordinate of the midpoint of a line is given by the formula:

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Since S is the midpoint, then

[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})=(2,-1)[/tex]

Where:

[tex]\begin{gathered} x_1=-9 \\ y_1=4 \\ x_2=? \\ y_2=\text{?} \end{gathered}[/tex]

So,

[tex]\begin{gathered} \frac{x_1+x_2}{2}=2 \\ \\ \frac{y_1+y_2}{2}=-1 \end{gathered}[/tex]

Implies:

[tex]\begin{gathered} \frac{-9_{}+x_2}{2}=2 \\ \\ -9+x_2=4 \\ x_2=4+9=13 \end{gathered}[/tex][tex]\begin{gathered} \frac{4_{}+y_2}{2}=-1 \\ \\ 4+y_2=-2 \\ y_2=-2-4=-6 \end{gathered}[/tex]

Therefore, T = (13, -6)

........................................................................................................................

Given S(-4, -6) and T(-7, -3)

Following the same steps as the one above, we want to find R, where T is the midpoint.

Here, the given parameters are:

[tex]\begin{gathered} x_2=-7 \\ y_2=-3 \end{gathered}[/tex][tex]\begin{gathered} x_1,y_1 \\ \text{are the unknown } \end{gathered}[/tex]

Now, we have:

[tex]\begin{gathered} \frac{x_1+x_2}{2}=-7 \\ \\ \frac{y_1+y_2}{2}=-3 \end{gathered}[/tex][tex]\begin{gathered} \frac{x_1-7}{2}=-4 \\ \\ x_1-7_{}=-8 \\ \\ x_1=-8+7=-1 \end{gathered}[/tex][tex]\begin{gathered} \frac{y_1-3}{2}=-6 \\ \\ y_1-3=-12 \\ \\ y_1=-12+3=-9 \end{gathered}[/tex]

The coordinate of the point R is (-1, 9)

RELAXING NOICE
Relax