I need to find the cost per table, the linear equation and the cost for making 15 tables

Explanation:
Let the cost of tables be C
Let the number of tables be"x"
If the cost of making 14 tables is $1,460 and the cost of making 17 tables is $1625, this can be expressed in the coordinate form of (C, x) to have two coordinates (14, 1460) and (17, 1625)
The general linear equation will be of the form C = mx + b
Get the rate of change "m"
[tex]\begin{gathered} m=\frac{C_2-C_1}{x_2-x_1} \\ m=\frac{1625-1460}{17-14} \\ m=\frac{165}{3} \\ m=55 \end{gathered}[/tex]Get the intercept "b" of the linear equation;
[tex]\begin{gathered} 1460=55(14)+b \\ 1460=770+b \\ b=1460-770 \\ b=690 \end{gathered}[/tex]Get the required linear equation:
[tex]C(x)=55x+690[/tex]Get the cost per table. When x = 1
[tex]\begin{gathered} C(1)=55(1)+690 \\ C(1)=745 \end{gathered}[/tex]Get the cost per for making 15 tables
[tex]\begin{gathered} C(15)=55(15)+690 \\ C(15)=825+690 \\ C(15)=\$1515 \end{gathered}[/tex]Hence the cost of making 15 tables is $1515