A can is shaped like a cylinder. The formula to find the volume of a cylinder is
[tex]\begin{gathered} V=\pi r^2h \\ \text{ Where} \\ \text{ V is the Volume} \\ r\text{ is the radius and} \\ h\text{ is the height of the cylinder} \end{gathered}[/tex]
Now, you calculate the height that each can should be, given the radius and the volume. For this you can clear at once, the height of the formula shown:
[tex]\begin{gathered} V=\pi r^2h \\ \text{ Divide by }\pi r^2\text{ from both sides of the equation} \\ \frac{V}{\text{ }\pi r^2}=\frac{\pi r^2h}{\text{ }\pi r^2} \\ \frac{V}{\text{ }\pi r^2}=h \end{gathered}[/tex]
Then, you have
*Radius = 2in
[tex]\begin{gathered} \frac{V}{\text{ }\pi r^2}=h \\ \frac{90in^3}{\text{ }\pi(2in)^2}=h \\ \frac{90in^3}{\text{ }\pi\cdot4in^2}=h \\ \frac{90in^3}{4\pi in^2}=h \\ \frac{90}{4\pi^{}}in=h \\ 7.2^{}in=h \end{gathered}[/tex]
*Radius = 2.5 in
[tex]\begin{gathered} \frac{V}{\text{ }\pi r^2}=h \\ \frac{90in^3}{\text{ }\pi(2.5in)^2}=h \\ \frac{90in^3}{\text{ }\pi\cdot6.25in^2}=h \\ \frac{90in^3}{6.25\pi in^2}=h \\ \frac{90^{}}{6.25\pi}in=h \\ 4.6in=h \end{gathered}[/tex]
*Radius = 3 in
[tex]\begin{gathered} \frac{V}{\text{ }\pi r^2}=h \\ \frac{90in^3}{\text{ }\pi(3in)^2}=h \\ \frac{90in^3}{\text{ }\pi9in^2}=h \\ \frac{90in^3}{9\pi in^2}=h \\ \frac{90}{9\pi}in=h \\ 3.2in=h \end{gathered}[/tex]
*Radius = 3.5 in
[tex]\begin{gathered} \frac{V}{\text{ }\pi r^2}=h \\ \frac{90in^3}{\text{ }\pi(3.5in)^2}=h \\ \frac{90in^3}{\text{ }\pi12.25in^2}=h \\ \frac{90in^3}{\text{ }12.25\pi in^2}=h \\ \frac{90}{\text{ }12.25\pi}in=h \\ 2.3in=h \end{gathered}[/tex]
Then, the table filled out with the radii, heights, and volumes of the cans would be:
Now, you can calculate the lateral surface area of each can using this formula:
[tex]\begin{gathered} \text{ Lateral Surface Area }=2\pi rh \\ \text{ Where} \\ r\text{ is the radius and} \\ h\text{ is the height of the cylinder} \end{gathered}[/tex]
Then, you have
*2 in radius can:
[tex]\begin{gathered} r=2in \\ h=7.2in \\ \text{ Lateral Surface Area }=2\pi rh \\ \text{ Lateral Surface Area }=2\pi(2in)(7.2in) \\ \text{ Lateral Surface Area }=2\pi\cdot14.4in^2 \\ \text{ Lateral Surface Area }=90.5in^2 \end{gathered}[/tex]
*2.5 in radius can:
[tex]\begin{gathered} r=2.5in \\ h=4.6in \\ \text{ Lateral Surface Area }=2\pi rh \\ \text{ Lateral Surface Area }=2\pi(2.5in)(4.6in) \\ \text{ Lateral Surface Area }=2\pi\cdot11.5in^2 \\ \text{ Lateral Surface Area }=72.3in^2 \end{gathered}[/tex]
*3 in radius can:
[tex]\begin{gathered} r=3in \\ h=3.2in \\ \text{ Lateral Surface Area }=2\pi rh \\ \text{ Lateral Surface Area }=2\pi(3in)(3.2in) \\ \text{ Lateral Surface Area }=2\pi\cdot9.6in^2 \\ \text{ Lateral Surface Area }=60.3in^2 \end{gathered}[/tex]
*3.5 in radius can:
[tex]\begin{gathered} r=3.5in \\ h=2.3in \\ \text{ Lateral Surface Area }=2\pi rh \\ \text{ Lateral Surface Area }=2\pi(3.5in)(2.3in) \\ \text{ Lateral Surface Area }=2\pi\cdot8.1in^2 \\ \text{ Lateral Surface Area }=50.6in^2 \end{gathered}[/tex]
Then, the table filled out with the radii, heights, lateral surface areas, and volumes of the cans will be:
Therefore, the cans must have a radius of 2.5 inches and a height of 4.6 inches, since they will have a volume of 90 cubic inches, will not exceed 5 inches in height, and will have the maximum possible lateral surface.