Given:
the length of the cable is
[tex]l=5\text{0 m}[/tex]the mass of the cable is
[tex]m=200\text{ kg}[/tex]the tension force on the cable is
[tex]T=1000\text{ N}[/tex]Required: velocity of the wave.
Explanation:
to find the velocity of the wave on a cable we use the formula that is given by
[tex]v=\sqrt[2]{\frac{T}{\mu}}[/tex]Where
[tex]T[/tex]is the tension force and
[tex]\mu[/tex]is mass per unit length.
first, we calculate the mass per unit length.
[tex]\begin{gathered} \mu=\frac{200\text{ kg}}{50\text{ m}} \\ \mu=4\text{ kg/m} \end{gathered}[/tex]now put this value in the above relation and solve for velocity, we get
[tex]\begin{gathered} v=\sqrt[2]{\frac{T}{\mu}} \\ v=\sqrt[2]{\frac{1000\text{ N}}{4\text{ kg/m}}} \\ v=15.81\text{ m/s} \end{gathered}[/tex]Thus, the speed of the wave is 15.81 m/s.