ANSWER
The future value of the investment is $2704.3515
STEP-BY-STEP EXPLANATION:
Given information
The present value = $2700
Annual simple interest rate = 2.25%
number of compounded period = 8 months
Let the future value be F.V
To find the future value, we need to apply the below formula
[tex]F\mathrm{}V\text{ = }P.V(1+r)^n[/tex]Where
• FV = future value
,• PV = Present value
,• r = interest rate
,• n = compounding period
The next thing is to convert 8 months to a year
let x be the number of years
Recall that,
12 months is equivalent to 1 year
8 months is equivalent to x years
Mathematically,
[tex]\begin{gathered} 12\text{ = 1} \\ 8\text{ = x} \\ \text{Cross multiply} \\ 12\cdot\text{ x = 8} \\ 12x\text{ = 8} \\ \text{Divide both sides 12} \\ \frac{12x}{12}\text{ = }\frac{8}{12} \\ x\text{ = 06667 year} \end{gathered}[/tex]Using the above formula, we can now find the future value of the investment
[tex]\begin{gathered} F\mathrm{}V=P.V(1+r)^n \\ F\mathrm{}V\text{ = 2700( 1 + }\frac{2.25}{100})^{0.667} \\ F\mathrm{}V=2700(1+0.0225)^{0.667} \\ F\mathrm{}V=2700(1.0225)^{0.067} \\ F\mathrm{}V\text{ = }2700\text{ x 1.014}945 \\ F\mathrm{}V\text{ = \$2704.3515} \end{gathered}[/tex]