We will have the following:
a. We will determine the gravitational potential energy as follows:
[tex]\begin{gathered} U_g=(0.036kg)(9.8m/s^2)(1.05m)\Rightarrow U_g=\frac{1323}{2500}J \\ \\ \Rightarrow U_g=0.5292J \end{gathered}[/tex]So, the gravitational potential energy is 0.5292 Joules.
b. Average speed:
[tex]\begin{gathered} v_a=\frac{1.05m}{0.73s}\Rightarrow v_a=\frac{105}{73}m/s \\ \\ \Rightarrow v_a\approx1.44m/s \end{gathered}[/tex]So, the average speed was 105/73 m/s, that is approximately 1.44 m/s.
c. The final speed will be determined as follows:
[tex]v_f=(9.8m/s^2)(0.73s)\Rightarrow v_f=7.154m/s[/tex]So, the final velocity will be 7.154 m/s.
d. The kinetic energy will be:
[tex]\begin{gathered} k=\frac{1}{2}(0.036kg)(7.154m/s)^2\Rightarrow k=0.921234888...J \\ \\ \Rightarrow k\approx0.92J \end{gathered}[/tex]So, the kinetic energy is approximately 0.92 Joules.
e. We will determine the efficiency as follows:
[tex]\begin{gathered} E=\frac{0.92J}{0.5292}\ast100\Rightarrow E=173.8373167... \\ \\ \Rightarrow E\approx173.84 \end{gathered}[/tex]So, the efficiency is approximately 173.84%.