The first step to solve this question is to balance the given equation:
[tex]2NH_3+H_2SO_4\rightarrow(NH_4)_2SO_4[/tex]The next step is to convert the mass of H2SO4 to moles, using the molar mass of H2SO4 (98g/mol).
[tex]1500gH_2SO_4\cdot\frac{molH_2SO_4}{98gH_2SO_4}=15.3molH_2SO_4[/tex]Now, use the stoichiometric ratio given by the reaction to define how many moles of NH3 react with 15.3 moles of H2SO4:
[tex]15.3molH_2SO_4\cdot\frac{2molNH_3}{1molH_2SO_4}=30.6molNH_3[/tex]Finally, use the ideal gas law to determine the volume of the gas at 24°C (297.15K) and 25atm:
[tex]\begin{gathered} PV=nRT \\ V=\frac{nRT}{P} \\ V=\frac{30.6mol\cdot0.082atmL/molK\cdot297.15K}{25atm} \\ V=29.82L \end{gathered}[/tex]The volume of NH3 needed is 29.82L.