I keep getting the wring answer. Can you help?Find the average rate of change of each function on the interval specified. Answer in simplified factor form.

The first step is to evaluate the function at the extreme values of the interval:
[tex]\begin{gathered} a(9)=\frac{1}{9+4}=\frac{1}{13} \\ a(9+h)=\frac{1}{9+h+4}=\frac{1}{13+h} \end{gathered}[/tex]Now, find the difference between these values:
[tex]\frac{1}{13+h}-\frac{1}{13}=\frac{13-(13+h)}{13(13+h)}=\frac{-h}{169+13h}[/tex]Divide this difference by the difference of the extreme values:
[tex]m=\frac{\frac{-h}{169+13h}}{9-(9+h)}=\frac{\frac{-h}{169+13h}}{-h}=\frac{-h}{-h(169+13h)}=\frac{1}{169+13h}[/tex]It means that the rate of change of the interval is:
[tex]\frac{1}{169+13h}=\frac{1}{13(13+h)}[/tex]