Step 1: Compute the rate in meters per seconds
[tex]\begin{gathered} 1\operatorname{km}\text{ }=1000m \\ 1h=60\times60s \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} 198\operatorname{km}\text{ / h }=\frac{198\operatorname{km}}{1h} \\ \text{Thus,} \\ 198\operatorname{km}\text{ / h }=\frac{198\times1000m}{60\times60s} \\ 198\operatorname{km}\text{ / h }=\frac{198\times10m}{6\times6s} \\ 198\operatorname{km}\text{ / h }=\frac{33\times10m}{1\times6s} \end{gathered}[/tex]
Hence,
[tex]198\operatorname{km}\text{ / h }=\frac{11\times10m}{1\times2s}=55m\text{ /s}[/tex]
Therefore, the rate in meters per seconds is 55 m/s
Step 2: Compute the number of metes the parachutist will fall in 2s at this rate (55m/s)
At the rate of 55m/s, the distance the parachutist falls in 2s is given by
[tex]55\times2=110m[/tex]
Hence, the number of meters is 110m