Respuesta :

Given:

The value of each of the parallel resistances is,

[tex]60\text{ ohm}[/tex]

The resistance in series with it is,

[tex]30\text{ ohm}[/tex]

The potential difference across the combination is,

[tex]V=120\text{ V}[/tex]

To find:

The potential drop across the parallel portion

Explanation:

The circuit diagram looks like:

The equivalent resistance of the circuit is,

[tex]\begin{gathered} R=30.0+(60.0\parallel60.0) \\ =30.0+\frac{60.0\times60.0}{60.0+60.0} \\ =30.0+30.0 \\ =60.0\text{ ohm} \end{gathered}[/tex]

The current through the circuit is,

[tex]\begin{gathered} i=\frac{V}{R} \\ =\frac{120}{60.0} \\ =2.0\text{ A} \end{gathered}[/tex]

The potential drop across 30.0 ohm is,

[tex]\begin{gathered} V_{30.0}=i\times30.0 \\ =2.0\times30.0 \\ =60\text{ V} \end{gathered}[/tex]

The potential drop across the rest parallel portion is,

[tex]\begin{gathered} V_{rest}=V-V_{30.0} \\ =120-60 \\ =60\text{ V} \end{gathered}[/tex]

Hence, the voltage drop across the entire parallel portion is 60 V.

Ver imagen JenishaL144380
RELAXING NOICE
Relax