Given:
The radius of the curvature of the convex mirror is
[tex]R=0.450\text{ m}[/tex]The distance of the object is
[tex]u=-2.75\text{ m}[/tex]Required: image distance and the magnification
Explanation:
first, we find the focal length of the mirror by the relation is
[tex]f=\frac{R}{2}[/tex]plugging the values in the above, we get
[tex]\begin{gathered} f=\frac{0.450\text{ m}}{2} \\ f=0.22\text{5 m} \end{gathered}[/tex]the mirror formula is given by
[tex]\frac{1}{f}=\frac{1}{v}+\frac{1}{u}[/tex]Plugging all the values in the above relation, we get
[tex]\begin{gathered} \frac{1}{0.225\text{ m}}=\frac{1}{v}+\frac{1}{-2.75\text{ m}} \\ \frac{1}{v}=\frac{1}{0.225}+\frac{1}{2.75} \\ \frac{1}{v}=\frac{2.75+0.225}{2.75\times0.225} \\ \frac{1}{v}=\frac{2.975}{0.618} \\ v=0.21\text{ m} \end{gathered}[/tex]the distance of the image is 0.21 m. it will be formed behind the mirror.
now calculate the magnification. magnification is given by
[tex]m=-\frac{v}{u}[/tex]Plugging all the values in the above, we get
[tex]\begin{gathered} m=-\frac{0.21m}{-2.75\text{ m}} \\ m=0.076\text{ } \end{gathered}[/tex]The magnification is 0.076.
the image formed by the convex mirror is virtual, inverted, and erect.