The equation given is
[tex]\frac{2}{5}(z+1)=y[/tex]We need to solve for the variable "z".
First, we multiply the term "z + 1" by "2/5" and do a bit algebra to isolate "z".
The steps are shown below:
[tex]\begin{gathered} \frac{2}{5}(z+1)=y \\ \frac{2}{5}(z)+\frac{2}{5}(1)=y \\ \frac{2}{5}z+\frac{2}{5}=y \\ \frac{2}{5}z=y-\frac{2}{5} \\ z=\frac{y-\frac{2}{5}}{\frac{2}{5}} \end{gathered}[/tex]We can simplify this a bit further:
[tex]\begin{gathered} z=\frac{y-\frac{2}{5}}{\frac{2}{5}} \\ z=\frac{y}{\frac{2}{5}}-\frac{\frac{2}{5}}{\frac{2}{5}} \\ z=\frac{5}{2}y-1 \end{gathered}[/tex]