We have the following equation
[tex]\mleft(x^2-1\mright)^2+\mleft(x^2-1\mright)-12=0[/tex]
Step 1.
Let t = (x^2 -1)
[tex]t=(x^2-1)[/tex]
We now have:
[tex]t^2+t-12=0[/tex]
Step 2. factor the above, to get t = -4 and 3
[tex]\begin{gathered} t^2+t-12=0 \\ t_{1,\: 2}=\frac{-1\pm\sqrt{1^2-4\cdot\:1\cdot\left(-12\right)}}{2\cdot\:1} \\ t_{1,\: 2}=\frac{-1\pm\sqrt{1^2-4\cdot\:1\cdot\left(-12\right)}}{2\cdot\:1} \\ t_1=\frac{-1+7}{2\cdot\:1},\: t_2=\frac{-1-7}{2\cdot\:1} \\ t_1=3,\: t_2=-4 \end{gathered}[/tex]
Step 3.
[tex]\begin{gathered} t=(x^2-1) \\ t_1=3,\: t_2=-4 \end{gathered}[/tex]
we can't use t = -4 because we will obtain an imaginary number, instead, lets use t=3 to solve for x
[tex]\begin{gathered} \mleft(x^2-1\mright)^{}=3 \\ x^2-1=3 \\ x^2-1+1=3+1 \\ x^2=4 \\ x=2,\: x=-2 \end{gathered}[/tex]
So, x = -2 and 2