Step 1. The equation that we have is:
[tex]x(x+6)+4=0[/tex]Before we apply the quadratic formula to solve the equation, we need to simplify the expression and multiply x by (x+6):
[tex]\begin{gathered} x(x+6)+4=0 \\ \downarrow \\ x^2+6x+4=0 \end{gathered}[/tex]Step 2. The next step is to compare our equation with the general standard form of the quadratic equation:
[tex]ax^2+bx+c=0[/tex]And we find that the values of x, b, and c are:
[tex]\begin{gathered} x^{2}+6x+4=0 \\ \downarrow\downarrow \\ a=1 \\ b=6 \\ c=4 \end{gathered}[/tex]Step 3. We will use to values of a, b, and c in the quadratic formula:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Substituting the known values:
[tex]x=\frac{-6\pm\sqrt{6^2-4(1)(4)}}{2(1)}[/tex]Step 4. Solving the operations step by step:
[tex]\begin{gathered} x=\frac{-6\pm\sqrt{36-16}}{2} \\ \downarrow \\ x=\frac{-6\pm\sqrt{20}}{2} \end{gathered}[/tex]We can simplify the square root of 20 as follows:
[tex]\sqrt{20}=\sqrt{4\cdot5}=2\sqrt{5}[/tex]Therefore:
[tex]x=\frac{-6\pm2\sqrt{5}}{2}[/tex]Now we make the division by 2:
[tex]\begin{gathered} x=\frac{-6\pm2\sqrt{5}}{2} \\ \downarrow \\ x=-3\pm\sqrt{5} \end{gathered}[/tex]Step 5. The final step is to use the + and - signs to find our two solutions:
[tex]\begin{gathered} Solution\text{ 1:} \\ x=-3+\sqrt{5} \\ Solution\text{ 2:} \\ x=-3-\sqrt{5} \end{gathered}[/tex]Answer:
[tex]\begin{gathered} x=-3+\sqrt{5} \\ x=-3-\sqrt{5} \end{gathered}[/tex]