Respuesta :

The distance (d) between two numbers a and b equals the absolute value of their difference:

[tex]d=|a-b|[/tex]

If a number x is at a distance of 1/4 from the number -5, then:

[tex]|x-(-5)|=\frac{1}{4}[/tex]

Solve for x. Remember that when an equation involves a variable inside an absolute value, two cases must be considered: If the expression inside the absolute value is positive or if it is negative.

Case 1: x-(-5) is positive.

Then:

[tex]|x-(-5)|=x-(-5)[/tex]

Solve for x:

[tex]\begin{gathered} |x-(-5)|=\frac{1}{4} \\ \Rightarrow x-(-5)=\frac{1}{4} \\ \Rightarrow x+5=\frac{1}{4} \\ \Rightarrow x=\frac{1}{4}-5 \\ \therefore x=-\frac{19}{4} \end{gathered}[/tex]

Case 2: x-(-5) is negative.

Then:

[tex]|x-(-5)|=-(x-(-5))[/tex]

Solve for x:

[tex]\begin{gathered} |x-(-5)|=\frac{1}{4} \\ \Rightarrow-(x-(-5))=\frac{1}{4} \\ \Rightarrow-(x+5)=\frac{1}{4} \\ \Rightarrow x+5=-\frac{1}{4} \\ \Rightarrow x=-\frac{1}{4}-5 \\ \therefore x=-\frac{21}{4} \end{gathered}[/tex]

Therefore, all the numbers that are at a distance of 1/4 from the number -5 are -21/4 and 19/4. They can be described by the equation:

[tex]|x-(-5)|=\frac{1}{4}[/tex]

RELAXING NOICE
Relax