Respuesta :

First, we have to use the distributive property.

[tex]\begin{gathered} 0.6(x-2)=0.3x+5-0.1x \\ 0.6x-1.2=0.3x+5-0.1x \\ \end{gathered}[/tex]

Then, we reduce like terms.

[tex]0.6x-1.2=0.2x+5[/tex]

Now, we subtract 0.2x from each side.

[tex]\begin{gathered} 0.6x-0.2x-1.2=0.2x-0.2x+5 \\ 0.4x-1.2=5 \end{gathered}[/tex]

Then, we add 1.2 on each side.

[tex]\begin{gathered} 0.4x-1.2+1.2=5+1.2 \\ 0.4x=6.2 \end{gathered}[/tex]

At last, we divide both sides by 0.4.

[tex]\begin{gathered} \frac{0.4x}{0.4}=\frac{6.2}{0.4} \\ x=15.5 \end{gathered}[/tex]

Therefore, the solution to the equation is x = 15.5.

RELAXING NOICE
Relax