Create a system of linear inequalities.
[tex]\begin{gathered} 5x+10y\le200 \\ 15x+7.5y\le240 \end{gathered}[/tex]Multiply both sides of the first inequality by 3. Thus, we obtain the following:
[tex]\begin{gathered} 15x+30y\le600 \\ 15x+7.5y\le240 \end{gathered}[/tex]Subtract the second inequality from the first inequality.
[tex]\begin{gathered} 22.5y\le360 \\ y\le16 \end{gathered}[/tex]To obtain the value of x, substitute 16 in the first inequality.
[tex]\begin{gathered} 5x+10y\le200 \\ 5x+10(16)\le200 \\ 5x+160\le200 \\ 5x\le40 \\ x\le8 \end{gathered}[/tex]Solve for the number of hours per shop.
[tex]\begin{gathered} A\colon5x+15x=20x=20(8)=160\text{ hours} \\ B\colon10y+7.5y=17.5y=17.5(16)=280\text{hours} \end{gathered}[/tex]Thus,
[tex]\begin{gathered} ShopA\colon8 \\ ShopB\colon16 \end{gathered}[/tex]