To answer this question we will use the following formula to compute the z-score:
[tex]\begin{gathered} z=\frac{x-\mu}{\sigma}, \\ where\text{ x is the observed value, }\mu\text{ is the mean and }\sigma\text{ is the standard deviation.} \end{gathered}[/tex]A) The z-score for x=178.19V is:
[tex]z=\frac{178.19V-178.03V}{0.08V}=\frac{0.16V}{0.08V}=2.[/tex]Using tables we get:
[tex]P(z<2)=97.72\%[/tex]B) The z-score of 177.95V is:
[tex]z=\frac{177.95V-178.03V}{0.08V}=\frac{-0.08V}{0.08V}=-1.[/tex]Using tables we get:
[tex]P(z>-1)=84.13\%.[/tex]Answer:
A) 97.72%.
B) 84.13%.