The sketch of the image is given below
The area of the segment can be obtained as follow
[tex]\text{Area of segment=Area of sector-Area of triangle}[/tex]
The area of the sector can be obtained as follow:
[tex]\begin{gathered} \text{Area of sector=}\frac{\theta}{360}\times\pi r^2 \\ \text{where} \\ \theta=90^0 \\ r=300\text{ f}eet \\ \pi=3.14 \end{gathered}[/tex][tex]\begin{gathered} \text{Area of sector=}\frac{90}{360}\times3.14\times300^2 \\ \\ \text{Area of sector=70650fe}et^2 \\ \end{gathered}[/tex]
The area of the triangle will be
[tex]\begin{gathered} \text{Area of triangle=}\frac{1}{2}r^2\sin \theta \\ \Rightarrow\frac{1}{2}\times300^2\times\sin 90 \\ \Rightarrow45000\text{feet}^2 \end{gathered}[/tex]
Therefore the area of the segment will be
[tex]\begin{gathered} \text{Area of segment= Area of sector-Area of triangle} \\ \text{Area of segment}=70650-45000=25650\text{feet}^2 \end{gathered}[/tex]