Respuesta :

The question

[tex]\sqrt[]{3}+i[/tex]

is written in the standard rectangular form:

[tex]a+bi[/tex]

To write in polar form, we must write it in the format

[tex]\begin{gathered} r(\cos \theta+i\sin \theta) \\ or \\ rcis\theta \end{gathered}[/tex]

To find r, we can use the formula

[tex]\begin{gathered} r=\sqrt[]{a^2+b^2} \\ \text{where} \\ a=\sqrt[]{3} \\ b=1 \end{gathered}[/tex]

Solving, we have

[tex]\begin{gathered} r=\sqrt[]{(\sqrt[]{3})^2+1^2} \\ r=\sqrt[]{3+1}=\sqrt[]{4} \\ r=2 \end{gathered}[/tex]

To find θ, we use

[tex]\theta=\tan ^{-1}\frac{b}{a}[/tex]

Substituting the values, we have

[tex]\begin{gathered} \theta=\tan ^{-1}\frac{1}{\sqrt[]{3}} \\ \theta=30^{\circ} \end{gathered}[/tex]

In polar form,

[tex]\theta=\frac{\pi}{6}[/tex]

Note that since a and b are positive, the angle is in the first quadrant. Hence, we use the angle as is.

Therefore, we have the answer to be

[tex]2\text{cis}\frac{\pi}{6}[/tex]

OPTION A is correct.

ACCESS MORE
EDU ACCESS