The question
[tex]\sqrt[]{3}+i[/tex]is written in the standard rectangular form:
[tex]a+bi[/tex]To write in polar form, we must write it in the format
[tex]\begin{gathered} r(\cos \theta+i\sin \theta) \\ or \\ rcis\theta \end{gathered}[/tex]To find r, we can use the formula
[tex]\begin{gathered} r=\sqrt[]{a^2+b^2} \\ \text{where} \\ a=\sqrt[]{3} \\ b=1 \end{gathered}[/tex]Solving, we have
[tex]\begin{gathered} r=\sqrt[]{(\sqrt[]{3})^2+1^2} \\ r=\sqrt[]{3+1}=\sqrt[]{4} \\ r=2 \end{gathered}[/tex]To find θ, we use
[tex]\theta=\tan ^{-1}\frac{b}{a}[/tex]Substituting the values, we have
[tex]\begin{gathered} \theta=\tan ^{-1}\frac{1}{\sqrt[]{3}} \\ \theta=30^{\circ} \end{gathered}[/tex]In polar form,
[tex]\theta=\frac{\pi}{6}[/tex]Note that since a and b are positive, the angle is in the first quadrant. Hence, we use the angle as is.
Therefore, we have the answer to be
[tex]2\text{cis}\frac{\pi}{6}[/tex]OPTION A is correct.