Respuesta :

ANSWER

[tex](0.5,-4.75)[/tex]

EXPLANATION

We want to find the coordinates of the vertex of the equation:

[tex]f(x)=-x^2+x-5[/tex]

The general form of a parabolic equation is:

[tex]f(x)=ax^2+bx+c_{}[/tex]

The x-coordinate of the vertex of a parabola can be found by using the formula:

[tex]h=-\frac{b}{2a}[/tex]

From the given equation:

[tex]\begin{gathered} a=-1 \\ b=1 \end{gathered}[/tex]

This implies that the x-coordinate of the vertex of the parabola is:

[tex]\begin{gathered} h=-\frac{1}{2(-1)}=-\frac{1}{-2} \\ h=\frac{1}{2}=0.5 \end{gathered}[/tex]

To find the y-coordinate, substitute the value of h for x in the equation.

That is:

[tex]\begin{gathered} f(h)=f(\frac{1}{2})=-(\frac{1}{2})^2+(\frac{1}{2})-5 \\ f(\frac{1}{2})=-\frac{1}{4}+\frac{1}{2}-5 \\ f(\frac{1}{2})=-4.75 \end{gathered}[/tex]

Therefore, the vertex of the parabola is:

[tex](0.5,-4.75)[/tex]

RELAXING NOICE
Relax