Respuesta :

According to the intersecting secant theorem, we have that:

[tex]\angle J=\frac{1}{2}\times(mBC-mFG)[/tex]

and likewise:

[tex]\angle K=\frac{1}{2}\times(mAD-mEH)[/tex]

Since we have that:

[tex]\begin{gathered} mBC=120 \\ mFG=30 \end{gathered}[/tex]

we can get [tex]\angle J=\frac{1}{2}\times(120-30)[/tex][tex]\angle J=\frac{1}{2}\times(90)[/tex][tex]\angle J=45[/tex]Now, since we have that:

[tex]\begin{gathered} mAD=140 \\ \angle K=\angle J=45 \end{gathered}[/tex]

We can obtain mEH, as follows:

[tex]\begin{gathered} \angle K=\frac{1}{2}\times(mAD-mEH) \\ \end{gathered}[/tex][tex]45=\frac{1}{2}\times(45-mEH)[/tex][tex]45\times2=140-mEH[/tex][tex]90=140-\text{mEH}[/tex][tex]\text{mEH}=140-90[/tex]

[tex]\text{mEH}=50[/tex]

Thus, correct answer: option D

RELAXING NOICE
Relax