For the function f(x) = (25 – 10), find f-'(x). of-1(x) = (V)+10 3 of-'(x) = V(x + 10) of-1(x) = x3 + 10 f-1(x) = x3 + 10

Answer::
[tex]f^{-1}(x)=\sqrt[5]{x^3+10}[/tex]Explanation:
Given f(x) defined below:
[tex]f(x)=(x^5-10)^{\frac{1}{3}}[/tex]To solve for the inverse, follow the steps below:
Step 1: Rewrite the equation using y.
[tex]y=(x^5-10)^{\frac{1}{3}}[/tex]Step 2: Next, swap x and y:
[tex]x=(y^5-10)^{\frac{1}{3}}[/tex]Step 3: Solve for y.
[tex]\begin{gathered} x^3=y^5-10 \\ y^5=x^3+10 \\ y=\sqrt[5]{x^3+10} \end{gathered}[/tex]Step 4: Replace y with the inverse function:
[tex]f^{-1}(x)=\sqrt[5]{x^3+10}[/tex]