The initial expression is:
[tex]\frac{2}{5}(\frac{1}{2}y+20)-\frac{4}{5}=\frac{9}{20}(2y-1)_{}[/tex]First we use the distibution propertie so:
[tex]\frac{1}{5}y+8-\frac{4}{5}=\frac{9}{10}y-\frac{9}{10}[/tex]Now we pass all term with y to the right and all constats to the left so:
[tex]\frac{8}{1}-\frac{4}{5}+\frac{9}{10}=\frac{9}{10}y-\frac{1}{5}y[/tex]now we operate so:
[tex]\begin{gathered} \frac{80}{10}-\frac{8}{10}+\frac{9}{10}=\frac{9}{10}y-\frac{2}{10}y \\ \frac{81}{10}=\frac{7}{10}y \end{gathered}[/tex]now we multiply by 10 and divide by 7 so:
[tex]\begin{gathered} \frac{10}{7}\cdot\frac{81}{10}=y \\ \frac{81}{7}=y \end{gathered}[/tex]