Given:
The population of a colony of mosquitoes obeys the law of uninhibited growth. If there are 1000 mosquitoes initially and there are 1500 after 1 day,
Required:
what is the size of the colony after 3 days?
Explanation:
We know
[tex]A=A_0e^{kt}[/tex][tex]\begin{gathered} Where, \\ A_0=\text{ Starting amount} \\ e=\text{ Euler's constant} \\ k=\text{ Amount of increase} \\ t=\text{ time} \end{gathered}[/tex]
Now,
[tex]\begin{gathered} 1500=1000e^k \\ \frac{1500}{1000}=e^k \\ 1.5=e^k \\ ln1.5=klne \\ k=0.405 \end{gathered}[/tex]
After 3 days
[tex]\begin{gathered} A=1000\times e^{(0.405\times3)} \\ A=1000\times e^{1.215} \\ A=1000\times3.370 \\ A=3370 \end{gathered}[/tex]
Answer:
After 3 days there will be 3370 mosquitoes.