Help its due in 5 hours. And I haven’t got the answer right for 2 hours.

Explanation
the volume of a cone is given by:
[tex]\text{Volume}=\frac{1}{3}\pi\cdot r^2\cdot h[/tex]Step 1
find the radius:
let
Circumference= 6n inches
radius= r
[tex]\begin{gathered} \text{Circumference = 2 }\cdot\pi\cdot radius \\ \text{replace} \\ 6n\text{ inches=2}\cdot\pi\cdot\text{ r} \\ \text{divide both sides by 2}\pi \\ \frac{6n\text{ }}{2\pi}\text{=}\frac{\text{2}\cdot\pi\cdot\text{ r}}{2\pi} \\ so \\ r=\frac{6n\text{ }}{2\pi}=\frac{3n}{\pi} \\ r=\frac{3n}{\pi} \end{gathered}[/tex]Step 2
apply the formula for the volume of the cone:
let
h=13 inhces
[tex]\begin{gathered} r=\frac{3n}{\pi} \\ h=13\text{ inches} \end{gathered}[/tex]replace.
[tex]\begin{gathered} \text{Volume}=\frac{1}{3}\pi\cdot r^2\cdot h \\ \text{Volume}=\frac{1}{3}\pi\cdot(\frac{3\text{ n}}{\pi})^2\cdot13 \\ \text{Volume}=\frac{1}{3}\pi\frac{(9n^2)}{\pi^2}\cdot13 \\ \text{Volume}=\frac{3n^2}{\pi}\cdot13 \\ \text{Volume}=\frac{39n^2}{\pi}in^3 \end{gathered}[/tex]so, the answer is
[tex]\begin{gathered} \text{Volume}=\frac{39n^2}{\pi}in^3 \\ \text{Volume}\approx\frac{39n^2}{\pi}in^3 \\ \text{Volume=}12.41n^2inches^3 \end{gathered}[/tex]I hope this helps you