We can make a u-substitution to make it into a quadratic.
Let
[tex]u=x^2[/tex]Performing this substitution, we have:
[tex]\begin{gathered} x^4-17x^2+16 \\ =(x^2)^2-17(x^2)+16 \\ \text{Making u-substitution,} \\ u^2-17u+16 \\ (u-16)(u-1) \end{gathered}[/tex]Now, taking it back to "x", we have:
[tex]\begin{gathered} (u-16)(u-1) \\ (x^2-16)(x^2-1) \end{gathered}[/tex]We can further break it down by using the rule:
[tex]a^2-b^2=(a+b)(a-b)[/tex]So, let's factor it out completely:
[tex]\begin{gathered} (x^2-16)(x^2-1) \\ ((x)^2-(4)^2)((x)^2-(1)^2) \\ (x-4)(x+4)(x-1)(x+1) \end{gathered}[/tex]Thus, the fully factored form is:
[tex](x-4)(x+4)(x-1)(x+1)[/tex]