Given data:
Initial velocity of the ball;
[tex]u=40.0\text{ m/s}[/tex]Launch angle;
[tex]\theta=50.0\degree[/tex]Distance between the launch site and the hole;
[tex]D=170.0\text{ m}[/tex]The range of the projectile is given as,
[tex]R=\frac{u^2\sin 2\theta}{g}[/tex]Here, g is the acceleration due to gravity.
Substituting all known values,
[tex]\begin{gathered} R=\frac{(40\text{ m/s})^2\times\sin (2\times50\degree)}{9.8\text{ m/s}^2} \\ \approx160.78\text{ m} \end{gathered}[/tex]The distance between the hole and landing site is given as,
[tex]d=D-R[/tex]Substituting all known values,
[tex]\begin{gathered} d=(170\text{ m})-(160.78\text{ m}) \\ =9.22\text{ m} \end{gathered}[/tex]Therefore, the ball will land 9.22 m away from the hole.