We have the unit cost function C(x) expressed as:
[tex]C(x)=0.2x^2-100x+31146[/tex]We can find the minimum unit cost by deriving C(x) and equal the result to 0. Then, we can clear the value of x:
[tex]\begin{gathered} \frac{dC}{dx}=0.2\cdot2x-100\cdot1+31146\cdot0 \\ \frac{dC}{dx}=0.4x-100 \end{gathered}[/tex][tex]\begin{gathered} \frac{dC}{dx}=0 \\ 0.4x-100=0 \\ 0.4x=100 \\ x=\frac{100}{0.4} \\ x=250 \end{gathered}[/tex]Now, we can calculate the minimum cost by calculating C(250):
[tex]\begin{gathered} C(250)=0.2\cdot(250)^2-100\cdot250+31146 \\ C(250)=0.2\cdot62500-25000+31146 \\ C(250)=12500-25000+31146 \\ C(250)=18646 \end{gathered}[/tex]Answer: the minimum unit cost is $18,646