Find the values of x and y using the given chord, secant , and tangent lengths.x=y=

Let's find the values of x and y.
Take the following steps:
Step 1:
Apply the equation below to find x
[tex]x^2=2(2+10)[/tex]Let's solve for x.
Apply distributive property:
[tex]\begin{gathered} x^2=2(2)+2(10) \\ \\ x^2=4+20 \\ \\ x^2=24 \\ \\ \text{Take the square root of both sides:} \\ \sqrt[]{x^2}=\sqrt[]{24} \\ \\ x=4.9 \end{gathered}[/tex]Step 2:
Apply the equation below to find the value of y
[tex]x^2=4(4+y)[/tex]Substitute 24 for x² and find the value y:
[tex]\begin{gathered} 24=4(4+y)^{} \\ \\ 24=4(4)+4(y) \\ \\ 24=16+4y \\ \\ \text{Subtract 16 from both sides:} \\ 24-16=16-16+4y \\ \\ 8=4y \end{gathered}[/tex]Divide both sides by 4:
[tex]\begin{gathered} \frac{8}{4}=\frac{4y}{4} \\ \\ 2=y \\ \\ y=2 \end{gathered}[/tex]Therefore, we have:
x = 4.9
y = 2
ANSWER:
x = 4.9