ANSWER
[tex]\text{ The equation of the parabola is; \lparen y - 7\rparen}^2\text{ = 10\lparen x - 3.5\rparen}[/tex]EXPLANATION
Given that;
The focus of the parabola is (6, 7)
The directrix is 1
Follow the steps below to find the equation of the parabola
Step 1; Write the general formula of the parabola equation
[tex]\text{ \lparen y - k\rparen}^2\text{ = 4p\lparen x - h\rparen}^[/tex]Recall, that the vertex of the parabola midway between the focus and directrix
Hence, h can be calculated below has
[tex]\begin{gathered} \text{ h = }\frac{\text{ k}}{\text{ 2}} \\ \\ \text{ h = }\frac{7}{2} \\ \text{ h = 3.5} \end{gathered}[/tex]Also, p is the distance of vertex to directrix
p = 6 - 3.5
p = 2.5
Step 2; Substitute the calculated data into the formula in step 1
[tex]\begin{gathered} \text{ \lparen y - 7\rparen}^2\text{ = 4}\times2.5\text{ \lparen x - 3.5\rparen} \\ \text{ \lparen y - 7\rparen}^2\text{ = 10\lparen x - 3.5\rparen} \end{gathered}[/tex]