Respuesta :

Given the equation,

[tex]y=-\frac{11}{8}x^3[/tex]

Let us pick 5 points starting from x = 0 to x = 4

Having picked from point x = 0, let us solve for the corresponding y-values.

When x = 0,

[tex]\begin{gathered} y=-\frac{11}{8}\times0^3=-\frac{11}{8}\times0=0 \\ \therefore y=0 \end{gathered}[/tex]

So when x = 0, y = 0

When x = 1

[tex]\begin{gathered} y=-\frac{11}{8}\times1^3=-\frac{11}{8}\times1=-\frac{11}{8}=-1.375 \\ \therefore y=-1.375 \end{gathered}[/tex]

So when x = 1, y = -1.375

When x = 2,

[tex]\begin{gathered} y=-\frac{11}{8}\times2^3=-\frac{11}{8}\times8=-11 \\ \therefore y=-11 \end{gathered}[/tex]

So when x = 2, y = -11

When x = 3

[tex]\begin{gathered} y=-\frac{11}{8}\times3^3=-\frac{11}{8}\times27=-37.125 \\ \therefore y=-37.125 \end{gathered}[/tex]

So when x = 3, y = -37.125

When x = 4

[tex]\begin{gathered} y=-\frac{11}{8}\times4^3=-\frac{11}{8}\times64=-11\times8=-88 \\ \therefore y=-88 \end{gathered}[/tex]

So when x = 4, y = -88.

Let us now plot the graph

Ver imagen SitaraT86546
RELAXING NOICE
Relax