This is a permutation problem.
The expression n permutation r is expressed as:
[tex]^nP_r=\frac{n!}{(n-r)!}[/tex]In like manner, n permutation 4 will be:
[tex]\begin{gathered} P(n,4)=17160 \\ \frac{n!}{(n-4)!}=17160 \end{gathered}[/tex]Evaluation the permutation operation above, we have:
[tex]\begin{gathered} \frac{n!}{(n-4)!}=17160 \\ \frac{n(n-1)(n-2)(n-3)(n-4)!}{(n-4)!}=17160 \\ (n-4)!\text{ cancels out (n-4)!, thus we have;} \\ n(n-1)(n-2)(n-3)=17160 \end{gathered}[/tex]Expanding the Left hand side of the equation; we have:
[tex]\begin{gathered} n^4-6n^3+11n^2-6n=17160 \\ n^4-6n^3+11n^2-6n-17160=0 \end{gathered}[/tex]By factorization, the equation becomes;
[tex]\begin{gathered} \mleft(n+10\mright)\mleft(n-13\mright)\mleft(n^2-3n+132\mright)=0 \\ (n^2-3n+132)\text{ is not factorizable and would also produce unreal roots, thus the value of n from the expression can't be correct} \\ n+10=0\text{ will produce n=-10, we can have a negative result for permutation problems} \\ \text{Thus, the correct answer is;} \\ n-13=0 \\ n=13 \end{gathered}[/tex]Hence, the value of n is 13, option C