Given the expression
[tex]\frac{\left(5x³-6x+4\right)}{(x-2)}[/tex][tex]\frac{\left((5x³-10x^2+10x^2)-6x+4\right)}{(x-2)}[/tex][tex]\frac{\left(((5x^2)(x-2)+10x^2)-6x+4\right)}{(x-2)}[/tex][tex]5x^2+\frac{\left(10x^2-6x+4\right)}{(x-2)}[/tex][tex]5x^2+\frac{\left(10x^2-20x+20x-6x+4\right)}{(x-2)}[/tex][tex]5x^2+\frac{\left((10x)(x-2)+20x-6x+4\right)}{(x-2)}[/tex][tex]5x^2+10x+\frac{(14x+4\rparen}{(x-2)}[/tex][tex]5x^2+10x+\frac{(14x-28+28+4\rparen}{(x-2)}[/tex][tex]5x^2+10x+\frac{(14x-28)+32}{(x-2)}[/tex][tex]5x^2+10x+\frac{(14)(x-2)+32}{(x-2)}[/tex][tex]5x^2+10x+14+\frac{32}{(x-2)}[/tex]